Generative Diffusion Models on Graphs: Methods and Applications Chengyi LIU¹, Wenqi Fan¹, Yunqing Liu¹, Jiatong Li¹, Hang Li², Hui Liu², Jiliang Tang², Qing Li¹

¹The Hong Kong Polytechnic University, ²Michigan State University

Introduction

Graphs

Graphs can represent the rich variety of relationships between real-world entities. They have been widely used in a diversity of domains, aiming to model association information and structural patterns among various real-world objects.

Graph Generation

Graph generative models, with the goal of learning the given graph distributions and generating novel graphs, can be categorized into two generation patterns:

Diffusion Models

Three representative diffusion frameworks:

- Score Matching with Langevin Dynamics (SMLD)
- > Denoising Diffusion Probabilistic Model (DDPM) on Graphs
- Diffusion Models

Two main stages:

- Forward diffusion: perturb the original data by adding random noise (generally Gaussian noise)
- Reverse diffusion: recover the original input data from the random noise. Advancement:
- \checkmark Solid theoretical foundation
- ✓ Easy-to-tractable probabilistic parameters

- autoregressive generation
- one-shot generation

In general, graph generation faces three fundamental challenges:

- Discreteness
- **Complex Intrinsic Dependencies**
- **D** Permutation Invariant

Forward: $q(\mathbf{x}_t | \mathbf{x}_{t-1})$ Add noise $f_{G_0} \xrightarrow{} f_{G_0} \xrightarrow{} f_{G_1} \xrightarrow{} f_{G_1} \xrightarrow{} f_{G_2} \xrightarrow{} f_{G_2$

Score Matching with Langevin Dynamics (SMLD) on Graphs

- Forward: a sequence of incremental noise: $q_{\sigma}(\tilde{x}|x) \coloneqq \mathcal{N}(\tilde{x}|x, \sigma^2 I)$
- Reverse: learning the gradient of the data distribution $\nabla_x \log p(x)$ EDP-GNN:

- The very first score-matching diffusion method, which is for undirected graph. Denoising Diffusion Probabilistic Model (DDPM) on Graphs Constructs two parameterized Markov chains:

• Forward: $q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1 - \beta_t} x_{t-1}, \beta_t I)$ • Reverse: $p_{\theta}(x_t|x_{t-1}) = \mathcal{N}(x_{t-1}; \mu_{\theta}(x_t, t), \sum_{\theta}(x_t, t))$ *DiGress*

- Simplify the task to a sequence of classification by incorporating the cross entropy. Score-based Generative Models (SGM) on Graphs

The score SDE formula describes the diffusion process in continuous time steps.

• Forward: dx = f(x,t)dt + g(t)• Reverse: $dx = [f(x,t) - g(t)^2 \nabla_x \log p_t(x)] dt + g(t)d\overline{w}$ *GDSS*:

- Model the nodes and edges simultaneously

- The very first diffusion framework that enables the generation of a whole graph

Tasks	Applications	Frame	Representative Methods
Molecule Modeling		SMLD	MDM [Huang et al., 2022b]
			GeoDiff [Xu et al., 2022],
	Molecule	DDPM	EDMs [Hoogeboom et al., 2022],
			EEGSDE [Bao et al., 2023],
	Conformation		DiGress [Vignac et al., 2023]
	Generation	SGM	Torsional Diffusion [Jing et al., 2022],
	Generation		MOOD [Lee et al., 2022],
			GDSS [Jo et al., 2022],
			DGSM [Luo et al., 2021a],
			DiffBridges [Wu et al., 2022b]
		DDPM	FragDiff [Peng et al., 2023],
	Molecular		DiffLink [Igashov et al., 2022],
			TargetDiff [Guan et al., 2023],
	Docking		DiffBP [Lin et al., 2022]
		SGM	DiffDock [Corso et al., 2022]
Protein Modeling		DDPM	SMCDiff [Trippe et al., 2023],
			SiamDiff [Zhang et al., 2022],
			DiffFold [Wu et al., 2022a],
	Protein		ProSSDG [Anand and Achim, 2022],
	Generation		DiffAntigen [Luo et al., 2022a],
			RFdiffusion [Watson et al., 2022]
		SGM	ProteinSGM [Luo et al., 2022a]
	Protein-ligand Complex	DDPM	DiffEE [Nakata et al., 2022]
	Structure Prediction	SGM	NeuralPLexer [Qiao et al., 2022]

Application

Molecule Modelling

To employ graph learning techniques for the purpose of representing to better perform downstream tasks.

- Molecule conformation generation
- The biological and physical characteristics of the molecule are significantly influenced by its 3-D structure.

Molecule docking

- A computational method for predicting the preferred orientation of one molecule to a second molecule (typically a protein)
- Drug discovery

Protein Modeling

- Generate and predict the structure of proteins with specific structural and functional properties.
- > Predict the protein-ligand complex structure.

4 Future Challenges and Opportunities

Conditional Generation for Graph Diffusion Models.

- Incorporating conditions into generative models
- Trustworthiness for Graph Diffusion Models.
- Unintentional harm to users and society in various real-world tasks
- Safety-critical fields such as drug discovery.

Evaluation Metrics.

- Metrics based on graph statistics and properties are not fully trustable.
- Validity and diversity for graph generation Graph Diffusion Applications.
- Recommender Systems
- Graph Anomaly Detection
- Causal Graph Generation

For arXiv version and reference

