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Introduction
Graphs
Graphs can represent the rich variety of relationships between real-world entities. 
They have been widely used in a diversity of domains, aiming to model association 
information and structural patterns among various real-world objects. 

Diffusion Models
Three representative diffusion frameworks:
Ø Score Matching with Langevin Dynamics (SMLD)
Ø Denoising Diffusion Probabilistic Model (DDPM) on Graphs
Ø Diffusion Models
Two main stages:
uForward diffusion: perturb the original data by adding random noise ( generally 

Gaussian noise) 
uReverse diffusion: recover the original input data from the random noise. 
Advancement:
ü Solid theoretical foundation
ü Easy-to-tractable probabilistic parameters 

Generative Diffusion Models on Graphs
Score Matching with Langevin Dynamics (SMLD) on Graphs 
u Forward: a sequence of incremental noise: 𝑞! "𝑥 𝑥 ≔ 𝒩("𝑥|𝑥, 𝜎"𝐼)
u Reverse: learning the gradient of the data distribution 𝛻# log 𝑝(𝑥)
EDP-GNN:
- The very first score-matching diffusion method, which is for undirected graph. 
Denoising Diffusion Probabilistic Model (DDPM) on Graphs
Constructs two parameterized Markov chains:
uForward: 𝑞 𝑥$ 𝑥$%& = 𝒩(𝑥$; 1 − 𝛽$𝑥$%&, 𝛽$𝐼)
uReverse: 𝑝' 𝑥$ 𝑥$%& = 𝒩(𝑥$%&; 𝜇' 𝑥$ , 𝑡 , ∑' 𝑥$ , 𝑡 )
DiGress
- Simplify the task to a sequence of classification by incorporating the cross entropy. 
Score-based Generative Models (SGM) on Graphs
The score SDE formula describes the diffusion process in continuous time steps.
uForward: 𝑑𝑥 = 𝑓 𝑥, 𝑡 𝑑𝑡 + 𝑔(𝑡)
uReverse: 𝑑𝑥 = [𝑓 𝑥, 𝑡 − 𝑔 𝑡 " 𝛻# log 𝑝$ (𝑥)] 𝑑𝑡 + 𝑔 𝑡 𝑑?𝑤
GDSS：
- Model the nodes and edges simultaneously
- The very first diffusion framework that enables the generation of a whole graph

Application

4 Future Challenges and Opportunities
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Molecule Modelling
To employ graph learning techniques for the purpose of representing 
to better perform downstream tasks.  
Molecule conformation generation
Ø The biological and physical characteristics of the molecule are 

significantly influenced by its 3-D structure. 
Molecule docking
Ø A computational method for predicting the preferred orientation 

of one molecule to a second molecule (typically a protein)
Ø Drug discovery 
Protein Modeling
Ø Generate and predict the structure of proteins with specific 

structural and functional properties. 
Ø Predict the protein-ligand complex structure.

Conditional Generation for Graph Diffusion Models.
• Incorporating conditions into generative models 
Trustworthiness for Graph Diffusion Models. 
• Unintentional harm to users and society in various real-world tasks
• Safety-critical fields such as drug discovery. 
Evaluation Metrics. 
• Metrics based on graph statistics and properties are not fully trustable. 
• Validity and diversity for graph generation 
Graph Diffusion Applications. 
• Recommender Systems
• Graph Anomaly Detection
• Causal Graph Generation

Graph Generation
Graph generative models, with the goal of learning the given graph distributions and 
generating novel graphs, can be categorized into two generation patterns:
- autoregressive generation
- one-shot generation
In general, graph generation faces three fundamental challenges:
p Discreteness
p Complex Intrinsic Dependencies
p Permutation Invariant


